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Outline of the Course

© 0N

10.
11.
12.
13.

. Review of Probability
. Stationary processes

Eigen Analysis, Singular Value Decomposition (SVD) and Principal
Component Analysis (PCA)

The Learning Problem

Training vs Testing

Estimation theory: Maximum likelihood and Bayes estimation
The Wiener Filter

Adaptive Optimization: Steepest descent and the LMS algorithm
Least Squares (LS) and Recursive Least Squares (RLS) algorithm
Overfitting and Regularization

Logistic, Ridge and Lasso regression.

Neural Networks

Matrix Completion
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Eigen Analysis

Eigen Analysis

Objective: Utilize tools from linear algebra to characterize and analyze
matrices, especially the correlation matrix
» The correlation matrix plays a large role in statistical characterization and
processing.
» Previously result: R is Hermitian.
» Further insight into the correlation matrix is achieved through eigen
analysis

» Eigenvalues and vectors
» Matrix diagonalization
» Application: Optimum filtering problems
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Objective: For a Hermitian matrix R, find a vector q satisfying

Rq=)\q

» Interpretation: Linear transformation by R changes the scale, but not the
direction of q

» Fact: A M x M matrix R has M eigenvectors and eigenvalues
qu:AZq’L /1::172737”'7M

To see this, note
(R=X)g=0

For this to be true, the row/columns of (R — AI) must be linearly dependent,

= det(R—AI) =0
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Note: det(R — AI) is a Mth order polynomial in A
» The roots of the polynomial are the eigenvalues A, Ao, -+, A/

Rq; = \iq;

» Each eigenvector q; is associated with one eigenvalue \;

» The eigenvectors are not unique

Rq, = M\a;
:>R(aqi) = )\i(aqi)

Consequence: eigenvectors are generally normalized, e.g., |q;| =1 for
1=1,2,....M
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Example (General two dimensional case)

Let M =2 and
Ri1 Rip
R ) ;
[ Ra1 Rap ]
Determine the eigenvalues and eigenvectors.
Thus
det(R—XI) = 0
Rin—A  Rip
= . ’ =0
' Ron  Rap—A |

= A~ A(R11+ Ro2)+ (R11Ro2— R12Ra1) = 0

1
= A2 = 5 [(31,1 +Ryo) £ \/431,2R2,1 +(Ri1— R2,2)]
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Back substitution yields the eigenvectors:
Rii—X Rip qu|_10
Ro1  Rop— X || @ 0
In general, this yields a set of linear equations. In the M = 2 case:

(Ri1—AN)q1+ Ri2q2 =0
Ro1g1+ (Ra2—\)g2 =0

» Solving the set of linear equations for a specific eigenvalue )\; yields the
corresponding eigenvector, q;
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Example (Two—dimensional white noise)

Let R be the correlation matrix of a two—sample vector of zero mean white
noise 9
o 0
R =
Determine the eigenvalues and eigenvectors.

Carrying out the analysis yields eigenvalues

1
Ao = 5 |:(R1’1 + R272) + \/4R172R2,1 + (Rl,l - R2,2):|

= S| +oN 0t (020 =

and eigenvectors
! 0 2 1

Note: The eigenvectors are unit length (and orthogonal)
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Eigen Properties

Property (eigenvalues of RF)

If A1, A2,--+, Aps are the eigenvalues of R, then )\’f,)\g,--- ,)\ffw are the
eigenvalues of RF.

Proof: Note Rq; = \;q;.Multiplying both sides by R k —1 times,

RFq, = R 'q; = Mq;

Property (linear independence of eigenvectors)
The eigenvectors qi1,q2,---,qar, of R are linearly independent, i.e.,

M
> aiqi #0
-1

for all nonzero scalars ay, a9, -+ ,ayy.
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Property (Correlation matrix eigenvalues are real & nonnegative)

The eigenvalues of R are real and nonnegative.

Proof:
Rq, = \aq;
= qZHqu — )\iqZHCIi [pre-multiply by qZH]
ARq.
q;" q;

Follows from the facts: R. is positive semi-definite and q/q; = |q;|> > 0

Note: In most cases, R is positive definite and

>0, =12 M
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Property (Unique eigenvalues = orthogonal eigenvectors)

If A1, A2,--+, Aas are unique eigenvalues of R, then the corresponding
eigenvectors, qi1,q2,- - ,qas, are orthogonal.
Proof:
Rqg; = Xiq;
=q/'Rq, = Nala; ()

Also, since A; is real and R is Hermitian
Raq; = Ajq;
=qR = \qf
=q;'Rq; = Naj'q;
Substituting the LHS from (x)
= Niat @i = \jqf q;
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Thus

Naflai = Ajaf'a;
= \i—\)af'ai = 0

Since A1, A9,---, Aps are unique
qqi=0 i#]

= 1,92, - ,qas are orthogonal.
QED
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Diagonalization of R

Objective: Find a transformation that transforms the correlation matrix into a
diagonal matrix.

Let A1, A2,---, Ay be unique eigenvectors of R and take qi,q9, -+ ,qas to be
the M orthonormal eigenvectors

H L i=y
q; 4; :{ 0 i#j
Define Q = [q1,q2, - ,qas] and Q = diag(A1, A2, ,Aar). Then consider
af’
a3’
QHRQ = . R[Qh‘l%"%‘lM]

aff
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Q"RQ

= Q"RQ

FSAN/ELEG815

Rlq1,92, - ,qum]

[(A1q1, A2d2, -+, ANan]

L0 0 - Ay

Q (eigenvector diagonalization of R)

9
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Property (Q is unitary)

Q is unitary, i.e., Q"' =QH
Proof: Since the q; eigenvectors are orthonormal

QHQ = . [q17q27"'7qM]:I

:>Q_1 _ QH

Property (Eigen decomposition of R)

The correlation matrix can be expressed as

M H
R= Z Aigiq;
i=1



FEigen Properties FSAN/ELEGS815

Proof: The correlation diagonalization result states

QRQ =0
Isolating R and expanding,
qff
H qg
R = QQQ :[Q17QZ,"'aQM]Q .
afy
Maf
Aaq! M
= [ai,q2, -, 9] . =Y Naial
: i=1
Avak

Note: This also gives
R—l _ (QH)—IQ—IQ—I _ QQ—IQH
where Q7! = diag(1/A1,1/ A2, ,1/Apy)
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Aside (trace & determinant for matrix products)
Note trace(A) 2 i A Also,

trace(AB) = trace(BA) similarly  det(AB) = det(A)det(B)

Property (Determinant—Eigenvalue Relation)

The determinant of the correlation matrix is related to the eigenvalues as
follows:

M
det(R) = H i
=1

Proof: Using R = QQQ and the above,

det(R) = det(QQQ™)
= det(Q)det(Q7)det(Q) = det(Q) = ﬁ \i

1=1
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Property (Trace—Eigenvalue Relation)
The trace of the correlation matrix is related to the eigenvalues as follows:

M
trace(R) =) _\;
i=1

Proof: Note

trace(R) = trace(QQQY)

= trace(Q7QQ)
trace(Q)

M
=1

QED
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Definition (Normal Matrix)

A complex square matrix A is a normal matrix if
ATA=AA"

That is, a matrix is normal if it commutes with its conjugate transpose.
Note
» All Hermitian symmetric matrices are normal
» Every matrix that can be diagonalized by the unitary transform is normal

Definition (Condition Number)

The condition number reflects how numerically well-conditioned a problem is,
i.e, a low condition number = well-conditioned; a high condition number =
ill-conditioned.
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Definition (Condition Number for Linear Systems)

For a linear system

Ax=Db
defined by a normal matrix A, the condition number is
)\max
A) =
X( ) )\min

where A\pax and Apin are the maximum /minimum eigenvalues of A
Observations:
» Large eigenvalue spread = ill-conditioned

» Small eigenvalue spread = well-conditioned
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Matrix-Vector Multiplication

Example in 2D:

and,

y:Ax:[_21 H[HZB]

What is the geometrical meaning of the matrix-vector multiplication?
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» Rotates the vector Z0
» Stretches the vector



Matrix-Vector Multiplication

To rotate x by an angle 6, we pre-multiply by

cosf —sinf
sinf cos@

Stretch x by factor «, pre-multiply by

i

FSAN/ELEG815

x=1[1,3] ~

0.5
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Matrix-Vector Multiplication

Consider the vectors v; and vy depicting a circle. What happens to the circle
under matrix multiplication?

o INSTSE
1.5 \‘\"‘“ Wy,
7 )

-15 -1 05 0 0.5 1 1.5
X

2-D Circle 3-D Sphere n-D Hypersphere
A[v1 V2] A[Vi V2 V3] AlVi - V]
v; € C? v,e C3 v,e C*
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Matrix-Vector Multiplication

What happens to the 2D circle under matrix multiplication?

Vq, Vs, A € (C2x2 [A][Vl VZ] = [ﬁ1 ﬁz]

TN

01 0]
0 (0))

02Uy Principal axis

Singular values

Uy, U, Unitary orthonormal vectors
01,02 “Stretching” constant

Note: Ortogonality holds since they are all rotated by the same angle.
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Matrix-Vector Multiplication

What happens to the n-D hyper-sphere under matrix multiplication?
AVj = O'Jﬁ]

oq ... 0

0 .. o,
oU3

Unitary orthonormal vectors
u;,u,, .., u,

_ _ “Stretching” constant
n-dim hyper-ellipse 01,02, .., Op
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n-dim Hyper-Sphere Mapping to n-dim Hyper-Ellipsoid

The mapping can be written as

AV1 = Ulﬂl
Avn = Ojﬁn
Expressed in matrix form as
01 0
A [Vl V9 Vn] = [ﬁl us ﬁn] :
~—_—— | S —

V CnXn ()] cmxn 0 . On

L J 0cC

A € Cmxn f} CnXxn

AV = 0%
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n-dim Hyper-Sphere Mapping to n-dim Hyper-Ellipsoid

Let vi,...,v, be unitary orthonormal vectors, then V =[v; vo ... v,] is a
unitary transformation matrix, that is

v i=vo,

Let Gy,...,0, be unitary orthonormal vectors, then U= [G1 G2 ... Gy,]is a
unitary transformation matrix, that is

u'l=uU
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Reduced Singular Value Decomposition

The mapping is thus given by,
AV = 0%

Multiply both sides by V™! we obtain:

AVV-! = (gxv!
. \VAVACR 1) 3 V2
Al = Usv?
A = 0Onv?

where ¥ = diag([o1,02,...,04]), such that o1 > g9 > ...0, > 0.
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» Reduced SVD

II z

(men

NIVERSITY o
Singular Value Decomposition
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> SVD

CﬂXTL

(mem

Cnxn
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Theorem 1

Every matrix A € C™*" has a singular value decomposition (SVD).
» Singular values o are uniquely determined.
» If A is square o; are distinct.

» u; and v; are also unique up to a complex sign. (unique if the complex
sign is ignored)
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SVD calculation
Start with ATA:

A"A = (uzv)" (uzvh)

— vuuzv?
Aav = vx?vhy
A"PAV = vy?

Reduces to an eigenvalue decomposition problem of the form:

ATAV=VX?
N—— ~~
B A

where A is a diagonal matrix with the eigenvalues of B and V corresponds to
the eigenvectors of B.
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SVD calculation

How do we calculate U:
AA" = (usv") (uzv”)H
= uzv'vzu®
AAT'U = ux?ufu
AA"U = ux?
—— ~~
B A

Eigenvalue problem where A is a diagonal matrix with the eigenvalues of B
and U corresponds to the eigenvectors of B.



FSAN/ELEG815

Movie Rating - A Solution

. . <2
» Describe a movie as an 2°
S
array of factors, e.g. o &.;\o o
1 ] > X

comedy, action... /})\0 & P
> De_scrlbe each viewer viewer:[ o [@] @ | R B

using same factors, 1

e.g. likes comedy, likes Match movieand  add contributions . predicted

action, etc | viewer factors from each factor rating

. movie: [ BN --- .- -

» Rating based on ‘.| | I | |

match /mismatch \\\ \

R <
25 % ()
» More factors — better o o%o ‘é%
o, %, G

prediction %, &, 7o
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Singular Value Decomposition Solution

Viewers rated movies on a scale from 1 to 5, 0 for movies that were not rated

by the user. g 2 I
» Each column j is a viewer1[ 0 | 1 [ 0 ] o[ s
H H Viewer 2 4 2 0 0 0
different movie N e B e e
Viewer 4 4 2 0 0 0
» Each row i is a different Viewers1 0 1 0 f 0 1 0 L °
i Viewer 6 0 0 3 3 0
viewer viewer7 [ 1 0 0 0 4
Viewer 8 2 1 0 0 4
Viewer 9 1 0 0 0 4
» Each element a; ;
represents the rating of a1,1 a1,n
movie j by viewer ¢ A = :
am1 --- ... Amn

Goal: Use SVD to predict unobserved data or the rating of a movie that
hasn't come out yet.
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Singular Value Decomposition Solution

We want to classify Movies and Viewers:

Category 1

Viewer 1 0 1 0 0 5

M . o Category 2 Viewer 2 4 2 0 0 0

ovies = Category 3 Viewer3| 0 0 3 3 0

Viewer 4 4 2 0 0 0

: Viewer 5 0 0 0 0 5

Viewer 6 0 0 3 3 0

Intuitively, if Movie; = Movies, these movies X?eW”; i Cl’ g 8 j
lewer

are similar (same category). Viewers| 1 | 0 | 0 | o | a

Categories are determined by matrix A and SVD algorithm.
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Singular Value Decomposition Solution

Now, consider that each movie belongs to more than one category e.g. half
comedy and half action. This can be written as:

Movie; = wviCatl +v2Cat2 +---+v,Catn viewer1[ 0 | 1 L o] o] 5
Viewer 2 4 2 0 0 0

S.t.||\l||2 =1 Viewer3 | 0 0 3 3 0

Viewer 4 4 2 0 0 0

. . Viewer 5 0 0 0 0 5

where the set of categories {Cat i} forms an T e e e e
orthonormal basis. viewer7] 1 f o J ool 4
Viewer 8 2 1 0 0 4

Viewer 9 1 0 0 0 4
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Singular Value Decomposition Solution

In the case of Viewers, we use the same Mowvies' categories:

Category 1
Movi Category 2 ,
OVIES =\ Category 3 [ — Viewers.
E.g. a viewer that loves comedy is represented § § § ¢ ¢
with the same unit vector of the comedy Viewerd | 0 L 1 1 0 L 015
i Viewer 2 4 2 0 0 0
category movies. Viewer3[ 0 [ 0 [ 3 [ 3 | 0
. . Vi 4 4 2 0 0 0
Each Viewer is represented as: N e B Ere ma s
Viewer 6 0 0 B Bl 0
. _ Viewer 7 1 0 0 0 4
Viewer; = wujCatl +usCat2+--- +u,Catn N e S o e o
Viewer 9 1 0 0 0 4

s.t.||ull2=1
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Singular Value Decomposition Solution

From Theorem 1:
There exist a unique decomposition into categories. Every matrix A € C"*"
can be factorized as A = UXV where:

(Cnxn Cnxn

men men
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Singular Value Decomposition Solution

cmxn cmxn

:

(CnXTL (Cnxn

» Each row vector (u;) in U represents the taste of a Viewer; on the
corresponding categories.

ul’l o e o .. u17n

c
I
I

Um’l e e Um’n
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Singular Value Decomposition Solution

cmxn cmxn

:

(CnXTL (Cnxn

» Each column (v;) in V7 represents the content of a Movie; on the
corresponding categories.

vll .« .. “ e . /1)1771
v = Lo e =[V1 Vo ooV

Un1 -+ ... Unn
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Singular Value Decomposition Solution

cmxn cmxn

:

(CnXTL (Cnxn

» Each singular value o;; in 3 computes how a viewer of category 7 rates a
movie of the same category 1.

o1 0 - 0
Z - 0‘2’2 ’
0 0 ... oppn
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Singular Value Decomposition Solution

We have more viewers than movies:

men

New categories are created. The new vectors are still unit vectors orthonormal
to all the basis vectors but the ratings of these useless categories are zero.
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Singular Value Decomposition Solution

The representation of each movie and each viewer can be obtained by

Mom'ej

Viewer;

vy jCatl 4+ vy ;Cat2+ - - -+ v, ;Catn s.tlvjll2 =1
V1,j4/01,1 T 02,4/022++Unj\/Onn
\/EVJ‘

u;1Catl +u; 20Cat2 + - - - +u; , Catn + - - - + u; ,, Catm
s.t|uill2=1

um\/m—i— ui,z\/@—i- e —|—ui,n\/m

u Ve
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Singular Value Decomposition Solution
Given the decomposition of a movie and a viewer, the rating is estimated by:

Viewer;Movie; = ;1010114 U;i202j022+ 4+ UinUn j0nn
= (uVI)(VIv))
= UZ‘EV]'
viewer (@[e @] [o] [o]e]
movie [[@f-[ Jof [o]@]
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Singular Value Decomposition - Example

Considering the rating from 60 viewers
to 16 movies of 4 different
genres(action, romance, sci-fi,
comedy), we generate A € R60x16

> Viewers rated movies on a scale
from 1 to 5, 0 for movies that
were not rated by the user.

I
60 Viewers
]

» Observe the same 4 categories of
viewers.
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Singular Value Decomposition - Example
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Singular Value Decomposition - Example

Similar
Viewers
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Singular Value Decomposition - Example

Similar Movies
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Singular Value Decomposition - Example

To estimate not rated movies (zero entries in A), we use additional
information: A is known to be low-rank or approximately low-rank.

Thus, we are going to use the k-rank approximation of the matrix A that is:
A=0x,. Vv

where 3. has all but the first £ singular values ¢;; set to zero.

The ratings different from zero in A are set to its original value.

Note: The ratings matrix A is expected to be low-rank since user preferences
can be described by a few categories (k), such as the movie genres.
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Singular Value Decomposition - Example

Only k=4 singular values
different from zero
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Principal Component Analysis (PCA)

» Simple, method for extracting relevant information from confusing data
sets.

» How to reduce a complex data set to a lower dimension?
» Consider a mass attached to a spring which oscillates as shown below.

zZ
N

* g F =ma
dZ
+l —sz =m d—[
f® f(t) = Acos(wt + wy)

What if we did not know that F' = ma?
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PCA - Motivation: Toy example

» Since we live in a 3D world — use three cameras to capture data from the
system.

» No information about the real x,y, and z axes — camera positions are
chosen arbitrarily.

» How do we get from this data set to a simple equation of z ?

Camera 1: (y1,2;)
Camera 2: (3, 25)

Camera 3: (3, 23)
z Camera 1 Camera 2
J (O m
V1
Camera 3 Z1 | Issues with the data

X = Y2| « Noise
z
2 [« Redundancy

Z3
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PCA - Motivation: Toy example

» Three cameras give redundant information.

» Only one camera at a specific angle necessary to describe the system
behavior.

» PCA is used to avoid redundancy.

Cameral Camera 2 Camera 3
eyt . -
Jesal®® - s’
#& S i
e e, &
$e ne e W R
e .'..':' L
I ~? '
. . ; >
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Framework: Change of Basis

» The goal of PCA is to identify the most meaningful basis to re-express a
dataset.

» Let the basis of representation for our samples be the “naive” choice, that
is the identity matrix.

b 10 ..0
by 01 ..0

B=| . |=|. . . .|=I (1)
b,] [0 0 1

Note all the recorded data can be trivially expressed as a linear
combination of b;.
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Change of Basis

» PCA: Is there another basis, which is a linear combination of the original
basis, that best respresents the data set?

» Let X be the original data set, where each column is a single
measurements set.
» Let Y be a linear transformation by P, i.e. Y =PX.

Implications:
» Geometrically P is a rotation and a stretch which transforms X into Y.
» The rows of P, {py,...,p,,} are a set of new basis vectors for expressing
the columns of X.
What is the best way to re-express X7, what is a good choice for P?
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Noise

2

> Signal and noise variances are depicted as 0g,,, and opgise-

» The largest direction of variance is not along the natural basis but along
the best-fit line.

» The directions with largest variances contain the dynamics of interest.
» Intuition: Find the direction indicated by ogignal-
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Redundancy
. et
s . :' - \- “‘ ;\ l. t'\
oo G Y kY
e ¥ Y
e : r2|_ O r2|_ 5
\_r1 ry r .
low redundancy high redundancy

» Figures depict possible plots between two arbitrary measurement types |
and 9.

» Low redundancy — uncorrelated recordings

» High redundancy— correlated recordings, e.g. the sensors are too close or
the measured variables are equivalent.

» If recordings are highly correlated it is not necessary to measure both of
them.
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PCA - Basic concepts
Let a = [a1,a2,...,a,] and b= [b1,ba,...,b,] be two sets of measurements.

Are they related?
If the mean of a and b is zero, then:

Intuitive concept of variance
5 T "

» Variance: How large the change is in each

High variance

vector.
,'"':‘Low variantﬁ
ol=—aa’ = -y a? N7
n n i
1 1
O_Z = —bbT = — Zb? % 5 10 Is
n n i Xa
a

» Covariance: Statistical relationship
between data in a and b.
5 1

T 1 ” ’
ooy = —ab® = — Za’lbl - Statistically
n n ; Inner Product Independent
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Variance and Covariance

Let X be defined as X = [xI]...|xL ], where x; k
corresponds to all measurements of a particular type.
Then the covariance matrix is defined as: Camera 1

. _ lXXH O m Camera 2

X n Y1
Z| Camera 3\Z

The covariance values reflect the noise and redundacy X= zz
in the measurements. V3
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Variance and Covariance

k
. . . . camera 1 ‘3‘1
Recall Cx is the covariance matrix of X defined as iy % C,a"z
1 H J(@ m
Cx - HXX . 1
72| camera3\Z
x=|
. . . - - 2
» Covariance matrix in the spring example is Cx € R6*6: 2
Z3
2 2 2 2 2 2 7
Ty11 0g121 Uglyz 0%122 Ugws Oy 23
o’ o o o o o
1Y1 2121 21Y2 2122 21Y3 2173
o2 o2 o2 o2 o2 o2
CX — 2Y1 :%221 g2y2 gZZZ %22-/3 g2z3
o o o o o o
22Y1 2221 22Y2 2222 22Y3 2223
o2 o2 o2 o2 o2 o2
3Y1 gSZl zSyQ z322 gsys %323
o o o o o o
L™ Z23Y1 2371 23Y2 2322 23Y3 23234

» Diagonal: Variance measures; Off-diagonal: covariance between all pairs.
> Cx is hermitian and symmetric, i.e. Cx = C¥ * = C%.
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O-élyl O—élzl Jél@/Q 0—2122 U%lyS 0_2123
Ugwl U§1z1 U§1y2 Ugmz 0;13/3 U§1Z3
Cx — ng.m ngm ngyz Tyozs 0%2743 Oyozs
ngw ‘75221 ngyz ‘75222 ngys 05223
Ug3y1 0%321 Ugsyz Oy3zo Uggys Oyszg
—Uz3y1 0-2321 UZng OZSZQ O-Z3y3 02323—

Off-diagonal terms
» If covariance is large then components are statistically dependent.

» If covariance is small then components are statistically independent.
Diagonal terms:
» If variance is large it contains a lot of information about the system.

» If variance is small it does not provide significant information about the
system.
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PCA

Goal: Change basis such that the covariance matrix of the data is diagonal.
» If off-diagonal terms ~ 0, the redundancies are eliminated.
» Diagonal terms represent the variance of each component.

» Components with large variance are the most representative.

Cx:
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PCA and Eigenvalue Decomposition

How to solve the problem?
» Data set: X € R™*™, where m is the number of measurement types and
n is the number of samples.
» PCA : Find an orthonormal matrix P in Y = PX such that Cy = %YYT is
a diagonal matrix.
» The rows of P are the principal components of X
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PCA and Eigenvalue Decomposition

We begin rewriting Cy in terms of the unknown variable.

Cy

1
~vyy”
n

i(PxxPxﬁ“

1

n
1

P<XXT>PT
n

PCxP”

PxxTpT
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PCA and Eigenvalue Decomposition

Cx can be diagonalized by an orthogonal matrix of its eigenvectors since it is
a symmetric matrix. Let P = QT where Q is a matrix with the eigenvectors
of 1XX”, then:
Cy = PCxP”

= P(Q"aQ)P”

= P(PTQP)P"

= (PPHQ(PP )

= O

The transformation Y = PX diagonalizes the system. Covariance of Y is a
diagonal matrix with the eigenvalues of %XXT.



PCA and SVD

FSAN/ELEG815

The SVD of X is given by X = UZVH . Let P = U¥, then:

Y = UPX,

The covariance matrix of Y is given by:

Cy

lYYH

n

luHxxHu

n

1
~“ufuzvivsufu
n

1
yn?
n
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PCA

» The transformation Y = U?X diagonalized the system. Covariance of Y

is a diagonal matrix with the squared singular values of X multiplied by a
factor of %

> It can be concluded that £2 = Q, and 022 = \.

» The principal components of the data matrix are given by U,
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Application: Face Recognition

» PCA in face recognition = Eigenfaces
» Intuition: Figure out the correlation between the rows/ colums of A from
the SVD.
A =Uxv? (2)
» How important each direction is: X
» Principal Directions: U

» How each individual component (row/column) projects onto the principal
components: V.
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Data in Face Recognition

The data matrix for the face recognition problem is constructed by vectorizing
the face images as shown below, i.e. A =[AT|AT|...|AT]T. The matrix will
be N x M, where N is the number of images in the data base and M is the

number of pixels of each image.
Vectorized Image

| Eal G ey ]

image 1
image 2

‘ A =|image 3
N :
- T~ image N

Discretized Image Data Matrix
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Example - Celebrity Images

Example, take 5 images of each celebrity: George Clooney, Bruce Willis,
Margaret Thatcher and Matt Damon. In the example, M = 240% 160 and
N = 20.




Average Faces

NIVERSITY or
EIAWARE
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How do the average of the faces of these celebrities look like?

1
;=) A,
j=1

(3)
a3

Average Clooney Average Willis

Average Thatcher

[m]

Average Damon

(=)
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Average Faces

What defines George Clooney's face?

» Data matrix A € RV*M with the images of the
example.

» Compute the correlation matrix of the features of
the dataset, i.e. the pixels.

» The correlation matrix is C = ATA € RM*M  here
M = 38400.

» High correlation values — everybody has eyes, a
nose and a mouth.

» Correlations between images of the same person
will be higher.

Average Face
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Eigendecomposition

» Obtain the eigenvalue
decomposition of
C=A"A. Thatis
C=Q0Q .

» First eigenvectors
q; € RM*X1 are called the
principal components
(eigenfaces).

» One can reconstruct each
face as a weighted sum of
the eigenvectors.

Eigenvalue Spread

1010@

5 10 15 20
Component #
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Representing Faces onto Basis

Each face A; € R"*M in the data set A = [AT|AT]...|A%]T, can be
represented as a linear combination of the best K eigenvectors:

K
A] =" w;q;, where w; =q] A] (4)
j=1
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Projection of the Average faces into the K=20 largest
Eigenvectors

» Qis M x M, here let Q be the matrix formed by the first 20
eigenvectors, i.e. Q € RM*N,

» Project the average faces a; onto the reduced eigenvector space, i.e.
projection = a,;Q.

» Projections for each face are characteristic of each average face and could
be used for classification purposes.

Projection of Avg. Clooney Projection of Avg. Willis Projection of Avg. Thatcher Projection of Avg. Damon
2000 4000 2000 2000
2000
0 0 0
0 Q -2000
-2000 a a a - a
QL 20| 30 200 o
-4000 -4000 -6000 -4000
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

Component # Component # Component # Component #
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Projection of new images

» Test set: New image of Margaret Thatcher, Maryl Streep as Margaret
Thatcher in “The Iron Lady”, Betty White.

> Project test images onto eigenvector space, p = xQ, where x € RI*M s
the new vectorized image and Q is the matrix with the first 20
eigenvectors of the database.

v

Reconstruct images as x = Qp” .

» Error defined as the difference between the projection of the new image
and the projection of the original Margaret Thatcher images A;Q where
j=1,...,5, that is

p,_ IAQ—xa|
1A;Ql

where A; are the original images of the database, in this case the 5
images of Margareth Thatcher.
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Projection of new images

Image depicts, from left to
right
» Test images.

» Projection of the test
images onto the
eigenvector space p = xQ.

» Reconstructed images
using the first 20
eigenvectors of the
database x = Qp” .

» Error of the projection
with respect to each
original Margareth
Thatcher Image.
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Projection of new images
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