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Outline of the Course
1. Review of Probability
2. Stationary processes
3. Eigen Analysis, Singular Value Decomposition (SVD) and Principal

Component Analysis (PCA)
4. The Learning Problem
5. Training vs Testing
6. Estimation theory: Maximum likelihood and Bayes estimation
7. The Wiener Filter
8. Adaptive Optimization: Steepest descent and the LMS algorithm
9. Least Squares (LS) and Recursive Least Squares (RLS) algorithm

10. Overfitting and Regularization
11. Logistic, Ridge and Lasso regression.
12. Neural Networks
13. Matrix Completion
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Eigen Analysis

Objective: Utilize tools from linear algebra to characterize and analyze
matrices, especially the correlation matrix
I The correlation matrix plays a large role in statistical characterization and

processing.
I Previously result: R is Hermitian.
I Further insight into the correlation matrix is achieved through eigen

analysis
I Eigenvalues and vectors
I Matrix diagonalization
I Application: Optimum filtering problems
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Objective: For a Hermitian matrix R, find a vector q satisfying

Rq = λq

I Interpretation: Linear transformation by R changes the scale, but not the
direction of q

I Fact: A M ×M matrix R has M eigenvectors and eigenvalues

Rqi = λiqi i= 1,2,3, · · · ,M

To see this, note
(R−λI)q = 0

For this to be true, the row/columns of (R−λI) must be linearly dependent,

⇒ det(R−λI) = 0
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Note: det(R−λI) is a Mth order polynomial in λ
I The roots of the polynomial are the eigenvalues λ1,λ2, · · · ,λM

Rqi = λiqi

I Each eigenvector qi is associated with one eigenvalue λi

I The eigenvectors are not unique

Rqi = λiqi

⇒R(aqi) = λi(aqi)

Consequence: eigenvectors are generally normalized, e.g., |qi|= 1 for
i= 1,2, . . . ,M
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Example (General two dimensional case)
Let M = 2 and

R =
[
R1,1 R1,2
R2,1 R2,2

]
Determine the eigenvalues and eigenvectors.
Thus

det(R−λI) = 0

⇒
∣∣∣∣∣ R1,1−λ R1,2

R2,1 R2,2−λ

∣∣∣∣∣ = 0

⇒ λ2−λ(R1,1 +R2,2) + (R1,1R2,2−R1,2R2,1) = 0

⇒ λ1,2 = 1
2

[
(R1,1 +R2,2)±

√
4R1,2R2,1 + (R1,1−R2,2)

]
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Back substitution yields the eigenvectors:[
R1,1−λ R1,2
R2,1 R2,2−λ

][
q1
q2

]
=
[

0
0

]

In general, this yields a set of linear equations. In the M = 2 case:

(R1,1−λ)q1 +R1,2q2 =0
R2,1q1 + (R2,2−λ)q2 =0

I Solving the set of linear equations for a specific eigenvalue λi yields the
corresponding eigenvector, qi
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Example (Two–dimensional white noise)
Let R be the correlation matrix of a two–sample vector of zero mean white
noise

R =
[
σ2 0
0 σ2

]
Determine the eigenvalues and eigenvectors.
Carrying out the analysis yields eigenvalues

λ1,2 = 1
2

[
(R1,1 +R2,2)±

√
4R1,2R2,1 + (R1,1−R2,2)

]
= 1

2

[
(σ2 +σ2)±

√
0 + (σ2−σ2)

]
= σ2

and eigenvectors
q1 =

[
1
0

]
and q2 =

[
0
1

]
Note: The eigenvectors are unit length (and orthogonal)
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Eigen Properties
Property (eigenvalues of Rk)
If λ1,λ2, · · · ,λM are the eigenvalues of R, then λk

1,λ
k
2, · · · ,λk

M are the
eigenvalues of Rk.
Proof: Note Rqi = λiqi.Multiplying both sides by R k−1 times,

Rkqi = λiRk−1qi = λk
i qi

Property (linear independence of eigenvectors)
The eigenvectors q1,q2, · · · ,qM , of R are linearly independent, i.e.,

M∑
i=1

aiqi 6= 0

for all nonzero scalars a1,a2, · · · ,aM .



9/79

Eigen Properties FSAN/ELEG815

Property (Correlation matrix eigenvalues are real & nonnegative)
The eigenvalues of R are real and nonnegative.
Proof:

Rqi = λiqi

⇒ qH
i Rqi = λiqH

i qi [pre–multiply by qH
i ]

⇒ λi = qH
i Rqi

qH
i qi

≥ 0

Follows from the facts: R is positive semi-definite and qH
i qi = |qi|2 > 0

Note: In most cases, R is positive definite and

λi > 0, i= 1,2, · · · ,M
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Property (Unique eigenvalues ⇒ orthogonal eigenvectors)
If λ1,λ2, · · · ,λM are unique eigenvalues of R, then the corresponding
eigenvectors, q1,q2, · · · ,qM , are orthogonal.
Proof:

Rqi = λiqi

⇒ qH
j Rqi = λiqH

j qi (∗)

Also, since λj is real and R is Hermitian
Rqj = λjqj

⇒ qH
j R = λjqH

j

⇒ qH
j Rqi = λjqH

j qi

Substituting the LHS from (∗)
⇒ λiqH

j qi = λjqH
j qi
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Thus

λiqH
j qi = λjqH

j qi

⇒ (λi−λj)qH
j qi = 0

Since λ1,λ2, · · · ,λM are unique

qH
j qi = 0 i 6= j

⇒ q1,q2, · · · ,qM are orthogonal.
QED
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Diagonalization of R
Objective: Find a transformation that transforms the correlation matrix into a
diagonal matrix.
Let λ1,λ2, · · · ,λM be unique eigenvectors of R and take q1,q2, · · · ,qM to be
the M orthonormal eigenvectors

qH
i qj =

{
1 i= j
0 i 6= j

Define Q = [q1,q2, · · · ,qM ] and ΩΩΩ = diag(λ1,λ2, · · · ,λM ). Then consider

QHRQ =


qH

1
qH

2...
qH

M

R[q1,q2, · · · ,qM ]
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QHRQ =


qH

1
qH

2...
qH

M

R[q1,q2, · · · ,qM ]

=


qH

1
qH

2...
qH

M

 [λ1q1,λ2q2, · · · ,λNqM ]

=


λ1 0 · · · 0
0 λ2 · · · 0
... ... . . . ...
0 0 · · · λM


⇒QHRQ = ΩΩΩ (eigenvector diagonalization of R)
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Property (Q is unitary)
Q is unitary, i.e., Q−1 = QH

Proof: Since the qi eigenvectors are orthonormal

QHQ =


qH

1
qH

2...
qH

M

 [q1,q2, · · · ,qM ] = I

⇒Q−1 = QH

Property (Eigen decomposition of R)
The correlation matrix can be expressed as

R =
M∑

i=1
λiqiqH

i
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Proof: The correlation diagonalization result states
QHRQ = ΩΩΩ

Isolating R and expanding,

R = QΩΩΩQQQH = [q1,q2, · · · ,qM ]ΩΩΩ


qH

1
qH

2...
qH

M



= [q1,q2, · · · ,qM ]


λ1qH

1
λ2qH

2...
λMqH

M

=
M∑

i=1
λiqiqH

i

Note: This also gives
R−1 = (QH)−1ΩΩΩ−1Q−1 = QΩΩΩ−1QH

where ΩΩΩ−1 = diag(1/λ1,1/λ2, · · · ,1/λM )
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Aside (trace & determinant for matrix products)
Note trace(AAA) 4=∑

iAi,i. Also,

trace(AAABBB) = trace(BBBAAA) similarly det(AAABBB) = det(AAA)det(BBB)

Property (Determinant–Eigenvalue Relation)
The determinant of the correlation matrix is related to the eigenvalues as
follows:

det(R) =
M∏

i=1
λi

Proof: Using R =QQQΩΩΩQQQH and the above,
det(R) = det(QQQΩΩΩQQQH)

= det(Q)det(QH)det(ΩΩΩ) = det(ΩΩΩ) =
M∏

i=1
λi
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Property (Trace–Eigenvalue Relation)
The trace of the correlation matrix is related to the eigenvalues as follows:

trace(R) =
M∑

i=1
λi

Proof: Note

trace(R) = trace(QQQΩΩΩQQQH)
= trace(QHQQQΩΩΩ)
= trace(ΩΩΩ)

=
M∑

i=1
λi

QED
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Definition (Normal Matrix)
A complex square matrix A is a normal matrix if

AHA = AAH

That is, a matrix is normal if it commutes with its conjugate transpose.
Note
I All Hermitian symmetric matrices are normal
I Every matrix that can be diagonalized by the unitary transform is normal

Definition (Condition Number)
The condition number reflects how numerically well–conditioned a problem is,
i.e, a low condition number ⇒ well–conditioned; a high condition number ⇒
ill–conditioned.
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Definition (Condition Number for Linear Systems)
For a linear system

Ax = b

defined by a normal matrix A, the condition number is

χ(A) = λmax
λmin

where λmax and λmin are the maximum/minimum eigenvalues of A
Observations:
I Large eigenvalue spread ⇒ ill–conditioned
I Small eigenvalue spread ⇒ well–conditioned
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Matrix-Vector Multiplication

Example in 2D:
A =

[
2 1
−1 1

]
x =

[
1
3

]
and,

y = Ax =
[

2 1
−1 1

][
1
3

]
=
[

5
2

]
What is the geometrical meaning of the matrix-vector multiplication?
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Matrix-Vector Multiplication

y = Ax =
[

2 1
−1 1

][
1
3

]
=
[

5
2

]

I Rotates the vector ∠θ
I Stretches the vector
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Matrix-Vector Multiplication

To rotate x by an angle θ, we pre-multiply by

A =
[
cosθ −sinθ
sinθ cosθ

]

Stretch x by factor α, pre-multiply by

A =
[
α 0
0 α

]
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Matrix-Vector Multiplication
Consider the vectors v1 and v2 depicting a circle. What happens to the circle
under matrix multiplication?
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Matrix-Vector Multiplication
What happens to the 2D circle under matrix multiplication?

Note: Ortogonality holds since they are all rotated by the same angle.
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Matrix-Vector Multiplication

What happens to the n-D hyper-sphere under matrix multiplication?
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n-dim Hyper-Sphere Mapping to n-dim Hyper-Ellipsoid
The mapping can be written as

Av1 = σ1û1
... ...

Avn = σjûn

Expressed in matrix form as A


︸ ︷︷ ︸

A ∈ Cm×n

[v1 v2 . . .vn]︸ ︷︷ ︸
V Cn×n

= [û1 û2 . . . ûn]︸ ︷︷ ︸
Û Cm×n


σ1 . . . 0
... . . . ...
0 . . . σn


︸ ︷︷ ︸

Σ̂ΣΣ Cn×n

AV = ÛΣ̂ΣΣ
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n-dim Hyper-Sphere Mapping to n-dim Hyper-Ellipsoid

Let v1, . . . ,vn be unitary orthonormal vectors, then V = [v1 v2 . . . vn] is a
unitary transformation matrix, that is

V−1 = VH .

Let û1, . . . , ûn be unitary orthonormal vectors, then Û = [û1 û2 . . . ûn] is a
unitary transformation matrix, that is

U−1 = Û
H
.
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Reduced Singular Value Decomposition

The mapping is thus given by,

AV = ÛΣ̂ΣΣ

Multiply both sides by V−1 we obtain:

AVV−1 = ÛΣ̂ΣΣV−1

AVVH = ÛΣ̂ΣΣVH

AI = ÛΣ̂ΣΣVH

A = ÛΣ̂ΣΣVH

where ΣΣΣ = diag([σ1,σ2, . . . ,σn]), such that σ1 ≥ σ2 ≥ . . .σp ≥ 0.
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Singular Value Decomposition
I Reduced SVD

I SVD
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Theorem 1

Every matrix A ∈ Cm×n has a singular value decomposition (SVD).
I Singular values σj are uniquely determined.
I If A is square σj are distinct.
I uj and vj are also unique up to a complex sign. (unique if the complex

sign is ignored)
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SVD calculation
Start with ATA:

AHA =
(
UΣΣΣVH

)H (
UΣΣΣVH)

= VΣΣΣUHUΣΣΣVH

AHAV = VΣΣΣ2VHV
AHAV = VΣΣΣ2

Reduces to an eigenvalue decomposition problem of the form:

ATA︸ ︷︷ ︸
B

V = V ΣΣΣ2︸︷︷︸
ΛΛΛ
,

where ΛΛΛ is a diagonal matrix with the eigenvalues of B and V corresponds to
the eigenvectors of B.
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SVD calculation

How do we calculate U:

AAH =
(
UΣΣΣVH)(UΣΣΣVH)H

= UΣΣΣVHVΣΣΣUH

AAHU = UΣΣΣ2UHU
AAH︸ ︷︷ ︸

B
U = U ΣΣΣ2︸︷︷︸

ΛΛΛ

Eigenvalue problem where ΛΛΛ is a diagonal matrix with the eigenvalues of B
and U corresponds to the eigenvectors of B.
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Movie Rating - A Solution
I Describe a movie as an

array of factors, e.g.
comedy, action...

I Describe each viewer
using same factors,
e.g. likes comedy, likes
action, etc

I Rating based on
match/mismatch

I More factors → better
prediction
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Singular Value Decomposition Solution
Viewers rated movies on a scale from 1 to 5, 0 for movies that were not rated
by the user.

I Each column j is a
different movie

I Each row i is a different
viewer

I Each element ai,j

represents the rating of
movie j by viewer i A =


a1,1 · · · · · · a1,n
... . . . . . . ...

am,1 . . . . . . am,n


Goal: Use SVD to predict unobserved data or the rating of a movie that
hasn’t come out yet.
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Singular Value Decomposition Solution

We want to classify Movies and Viewers:

Movies=


Category 1
Category 2
Category 3

...
Intuitively, if Movie1 ≈ Movie2, these movies
are similar (same category).

Categories are determined by matrix A and SVD algorithm.
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Singular Value Decomposition Solution

Now, consider that each movie belongs to more than one category e.g. half
comedy and half action. This can be written as:

Moviej = v1Cat1+v2Cat2+ · · ·+vnCatn
s.t.||v||2 = 1

where the set of categories {Cat i} forms an
orthonormal basis.
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Singular Value Decomposition Solution
In the case of V iewers, we use the same Movies’ categories:

Movies=


Category 1
Category 2
Category 3

...

= V iewers.

E.g. a viewer that loves comedy is represented
with the same unit vector of the comedy
category movies.
Each V iewer is represented as:

V ieweri = u1Cat1+u2Cat2+ · · ·+unCatn
s.t.||u||2 = 1
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Singular Value Decomposition Solution

From Theorem 1:
There exist a unique decomposition into categories. Every matrix A ∈ Cm×n

can be factorized as A = ÛΣVH where:
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Singular Value Decomposition Solution

I Each row vector (ui) in Û represents the taste of a V ieweri on the
corresponding categories.

Û =


u1,1 · · · · · · u1,n
... . . . . . . ...

um,1 . . . . . . um,n

=


u1
u2
...

um


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Singular Value Decomposition Solution

I Each column (vj) in VH represents the content of a Moviej on the
corresponding categories.

VH =


v1,1 · · · · · · v1,n
... . . . . . . ...

vn,1 . . . . . . vn,n

=
[

v1 v2 . . . vn

]
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Singular Value Decomposition Solution

I Each singular value σii in Σ computes how a viewer of category i rates a
movie of the same category i.

Σ =


σ1,1 0 · · · 0
... σ2,2

. . . ...
0 0 . . . σn,n


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Singular Value Decomposition Solution

We have more viewers than movies:

New categories are created. The new vectors are still unit vectors orthonormal
to all the basis vectors but the ratings of these useless categories are zero.
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Singular Value Decomposition Solution
The representation of each movie and each viewer can be obtained by

Moviej = v1,jCat1+v2,jCat2+ · · ·+vn,jCatn s.t.||vj||2 = 1
= v1,j

√
σ1,1 +v2,j

√
σ2,2 + · · ·+vn,j

√
σn,n

=
√

Σvj

V ieweri = ui,1Cat1+ui,2Cat2+ · · ·+ui,nCatn+ · · ·+ui,mCatm
s.t.||ui||2 = 1

= ui,1
√
σ1,1 +ui,2

√
σ2,2 + · · ·+ui,n

√
σn,n

= ui

√
Σ
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Singular Value Decomposition Solution
Given the decomposition of a movie and a viewer, the rating is estimated by:

V ieweriMoviej = ui,1v1,jσ1,1 +ui,2v2,jσ2,2 + · · ·+ui,nvn,jσn,n

= (ui

√
Σ)(
√

Σvj)
= uiΣvj
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Singular Value Decomposition - Example

Considering the rating from 60 viewers
to 16 movies of 4 different
genres(action, romance, sci-fi,
comedy), we generate A ∈ R60×16

I Viewers rated movies on a scale
from 1 to 5, 0 for movies that
were not rated by the user.

I Observe the same 4 categories of
viewers.
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Singular Value Decomposition - Example
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Singular Value Decomposition - Example
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Singular Value Decomposition - Example
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Singular Value Decomposition - Example

To estimate not rated movies (zero entries in A), we use additional
information: A is known to be low-rank or approximately low-rank.
Thus, we are going to use the k-rank approximation of the matrix A that is:

Â = ÛΣkVH

where Σk has all but the first k singular values σii set to zero.

The ratings different from zero in A are set to its original value.

Note: The ratings matrix A is expected to be low-rank since user preferences
can be described by a few categories (k), such as the movie genres.
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Singular Value Decomposition - Example
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Singular Value Decomposition - Example



52/79

PCA FSAN/ELEG815

Principal Component Analysis (PCA)

I Simple, method for extracting relevant information from confusing data
sets.

I How to reduce a complex data set to a lower dimension?
I Consider a mass attached to a spring which oscillates as shown below.

What if we did not know that F =ma?



53/79

PCA FSAN/ELEG815

PCA - Motivation: Toy example
I Since we live in a 3D world → use three cameras to capture data from the

system.
I No information about the real x,y, and z axes → camera positions are

chosen arbitrarily.
I How do we get from this data set to a simple equation of z ?
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PCA - Motivation: Toy example
I Three cameras give redundant information.
I Only one camera at a specific angle necessary to describe the system

behavior.
I PCA is used to avoid redundancy.
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Framework: Change of Basis

I The goal of PCA is to identify the most meaningful basis to re-express a
dataset.

I Let the basis of representation for our samples be the “naive” choice, that
is the identity matrix.

B =


b1
b2
...

bm

=


1 0 . . . 0
0 1 . . . 0
... ... . . . ...
0 0 . . . 1

= I (1)

Note all the recorded data can be trivially expressed as a linear
combination of bi.
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Change of Basis

I PCA: Is there another basis, which is a linear combination of the original
basis, that best respresents the data set?

I Let X be the original data set, where each column is a single
measurements set.

I Let Y be a linear transformation by P, i.e. Y = PX.
Implications:
I Geometrically P is a rotation and a stretch which transforms X into Y.
I The rows of P, {p1, . . . ,pm} are a set of new basis vectors for expressing

the columns of X.
What is the best way to re-express X?, what is a good choice for P?
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Noise

I Signal and noise variances are depicted as σ2
signal and σ2

noise.
I The largest direction of variance is not along the natural basis but along

the best-fit line.
I The directions with largest variances contain the dynamics of interest.
I Intuition: Find the direction indicated by σsignal.
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Redundancy

I Figures depict possible plots between two arbitrary measurement types r1
and r2.

I Low redundancy → uncorrelated recordings
I High redundancy→ correlated recordings, e.g. the sensors are too close or

the measured variables are equivalent.
I If recordings are highly correlated it is not necessary to measure both of

them.
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PCA - Basic concepts
Let a = [a1,a2, . . . ,an] and b = [b1, b2, . . . , bn] be two sets of measurements.
Are they related?
If the mean of a and b is zero, then:
I Variance: How large the change is in each

vector.

σ2
a = 1

n
aaT = 1

n

∑
i

a2
i

σ2
b = 1

n
bbT = 1

n

∑
i

b2i

I Covariance: Statistical relationship
between data in a and b.

σ2
ab = 1

n
abT = 1

n

∑
i

aibi
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Variance and Covariance

Let X be defined as X = [xT
1 | . . . |xT

m], where xi

corresponds to all measurements of a particular type.
Then the covariance matrix is defined as:

CX = 1
n

XXH

The covariance values reflect the noise and redundacy
in the measurements.
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Variance and Covariance

Recall CX is the covariance matrix of X defined as
CX = 1

nXXH .

I Covariance matrix in the spring example is CX ∈ R6×6:

CX =



σ2
y1y1 σ2

y1z1 σ2
y1y2 σ2

y1z2 σ2
y1y3 σ2

y1z3
σ2

z1y1 σ2
z1z1 σ2

z1y2 σ2
z1z2 σ2

z1y3 σ2
z1z3

σ2
y2y1 σ2

y2z1 σ2
y2y2 σ2

y2z2 σ2
y2y3 σ2

y2z3
σ2

z2y1 σ2
z2z1 σ2

z2y2 σ2
z2z2 σ2

z2y3 σ2
z2z3

σ2
y3y1 σ2

y3z1 σ2
y3y2 σ2

y3z2 σ2
y3y3 σ2

y3z3
σ2

z3y1 σ2
z3z1 σ2

z3y2 σ2
z3z2 σ2

z3y3 σ2
z3z3


I Diagonal: Variance measures; Off-diagonal: covariance between all pairs.
I CX is hermitian and symmetric, i.e. CX = CT ∗

X = CT
X.



62/79

PCA FSAN/ELEG815

Covariance Matrix Interpretation

CX =



σ2
y1y1 σ2

y1z1 σ2
y1y2 σ2

y1z2 σ2
y1y3 σ2

y1z3
σ2

z1y1 σ2
z1z1 σ2

z1y2 σ2
z1z2 σ2

z1y3 σ2
z1z3

σ2
y2y1 σ2

y2z1 σ2
y2y2 σ2

y2z2 σ2
y2y3 σ2

y2z3
σ2

z2y1 σ2
z2z1 σ2

z2y2 σ2
z2z2 σ2

z2y3 σ2
z2z3

σ2
y3y1 σ2

y3z1 σ2
y3y2 σ2

y3z2 σ2
y3y3 σ2

y3z3
σ2

z3y1 σ2
z3z1 σ2

z3y2 σ2
z3z2 σ2

z3y3 σ2
z3z3


Off-diagonal terms
I If covariance is large then components are statistically dependent.
I If covariance is small then components are statistically independent.

Diagonal terms:
I If variance is large it contains a lot of information about the system.
I If variance is small it does not provide significant information about the

system.
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PCA

Goal: Change basis such that the covariance matrix of the data is diagonal.
I If off-diagonal terms ≈ 0, the redundancies are eliminated.
I Diagonal terms represent the variance of each component.
I Components with large variance are the most representative.
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PCA and Eigenvalue Decomposition

How to solve the problem?
I Data set: X ∈ Rm×n, where m is the number of measurement types and
n is the number of samples.

I PCA : Find an orthonormal matrix P in Y = PX such that CY = 1
nYYT is

a diagonal matrix.
I The rows of P are the principal components of X
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PCA and Eigenvalue Decomposition

We begin rewriting CY in terms of the unknown variable.

CY = 1
n

YYT

= 1
n

(PX)(PX)T

= 1
n

PXXT PT

= P
(1
n

XXT
)

PT

= PCXPT
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PCA and Eigenvalue Decomposition
CX can be diagonalized by an orthogonal matrix of its eigenvectors since it is
a symmetric matrix. Let P = QT , where Q is a matrix with the eigenvectors
of 1

nXXT , then:

CY = PCXPT

= P
(
QT ΩΩΩQ

)
PT

= P
(
PT ΩΩΩP

)
PT

=
(
PP−1)ΩΩΩ

(
PP−1)

= ΩΩΩ

The transformation Y = PX diagonalizes the system. Covariance of Y is a
diagonal matrix with the eigenvalues of 1

nXXT .
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PCA and SVD
The SVD of X is given by X = UΣΣΣVH . Let P = UH , then:

Y = UHX,

The covariance matrix of Y is given by:

CY = 1
n

YYH

= 1
n

UHXXHU

= 1
n

UHUΣΣΣVHVΣΣΣUHU

= 1
n

ΣΣΣ2
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PCA

I The transformation Y = UHX diagonalized the system. Covariance of Y
is a diagonal matrix with the squared singular values of X multiplied by a
factor of 1

n .
I It can be concluded that ΣΣΣ2 = ΩΩΩ, and σ2

i = λi.
I The principal components of the data matrix are given by UH .
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Application: Face Recognition

I PCA in face recognition , Eigenfaces
I Intuition: Figure out the correlation between the rows/ colums of A from

the SVD.
A = UΣΣΣVH (2)

I How important each direction is: ΣΣΣ
I Principal Directions: U
I How each individual component (row/column) projects onto the principal

components: V.
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Data in Face Recognition
The data matrix for the face recognition problem is constructed by vectorizing
the face images as shown below, i.e. A = [AT

1 |AT
2 | . . . |AT

N ]T . The matrix will
be N ×M , where N is the number of images in the data base and M is the
number of pixels of each image.
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Example - Celebrity Images
Example, take 5 images of each celebrity: George Clooney, Bruce Willis,
Margaret Thatcher and Matt Damon. In the example, M = 240∗160 and
N = 20.
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Average Faces
How do the average of the faces of these celebrities look like?

āi = 1
5

5∑
j=1

Aj (3)
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Average Faces
What defines George Clooney’s face?

I Data matrix A ∈ RN×M with the images of the
example.

I Compute the correlation matrix of the features of
the dataset, i.e. the pixels.

I The correlation matrix is C = AT A ∈RM×M , here
M = 38400.

I High correlation values → everybody has eyes, a
nose and a mouth.

I Correlations between images of the same person
will be higher.

Average Face
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Eigendecomposition

I Obtain the eigenvalue
decomposition of
C = AT A. That is
C = QΩΩΩQ−1.

I First eigenvectors
qi ∈ RM×1 are called the
principal components
(eigenfaces).

I One can reconstruct each
face as a weighted sum of
the eigenvectors.
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Representing Faces onto Basis
Each face Ai ∈ R1×M in the data set A = [AT

1 |AT
2 | . . . |AT

N ]T , can be
represented as a linear combination of the best K eigenvectors:

AT
i =

K∑
j=1

wjqj , where wj = qT
j AT

i (4)
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Projection of the Average faces into the K=20 largest
Eigenvectors

I Q is M ×M , here let Q be the matrix formed by the first 20
eigenvectors, i.e. Q ∈ RM×N .

I Project the average faces āi onto the reduced eigenvector space, i.e.
projection = āiQ.

I Projections for each face are characteristic of each average face and could
be used for classification purposes.
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Projection of new images
I Test set: New image of Margaret Thatcher, Maryl Streep as Margaret

Thatcher in “The Iron Lady”, Betty White.
I Project test images onto eigenvector space, p = xQ, where x ∈ R1×M is

the new vectorized image and Q is the matrix with the first 20
eigenvectors of the database.

I Reconstruct images as x̂ = QpT .
I Error defined as the difference between the projection of the new image

and the projection of the original Margaret Thatcher images AjQ where
j = 1, . . . ,5, that is

Ej = ||AjQ−xQ||
||AjQ||

,

where Aj are the original images of the database, in this case the 5
images of Margareth Thatcher.
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Projection of new images
Image depicts, from left to
right
I Test images.
I Projection of the test

images onto the
eigenvector space p = xQ.

I Reconstructed images
using the first 20
eigenvectors of the
database x̂ = QpT .

I Error of the projection
with respect to each
original Margareth
Thatcher Image.
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Projection of new images
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